Passive permeability controls synthesis for the allelochemical sorgoleone in sorghum root exudate

TitlePassive permeability controls synthesis for the allelochemical sorgoleone in sorghum root exudate
Publication TypeJournal Article
Year of Publication2023
AuthorsRaza, S, Sievertsen, TH, Okumoto, S, Vermaas, JV
Volume217
Pagination113891
Date Published10/2023
ISBN Number0031-9422
KeywordsInhomogeneous solubility diffusion model, Membrane permeability, Molecular dynamics simulation, Sorghum membrane, Sorgoleone
Abstract

Competition for soil nutrients and water with other plants foster competition within the biosphere for access to these limited resources. The roots for the common grain sorghum produce multiple small molecules that are released via root exudates into the soil to compete with other plants. Sorgoleone is one such compound, which suppresses weed growth near sorghum by acting as a quinone analog and interferes with photosynthesis. Since sorghum also grows photosynthetically, and may be susceptible to sorgoleone action if present in tissues above ground, it is essential to exude sorgoleone efficiently. However, since the P450 enzymes that synthesize sorgoleone are intracellular, the release mechanism for sorgoleone remain unclear. In this study, we conducted an in silico assessment for sorgoleone and its precursors to passively permeate biological membranes. To facilitate accurate simulation, CHARMM parameters were newly optimized for sorgoleone and its precursors. These parameters were used to conduct 1 μs of unbiased molecular dynamics simulations to compare the permeability of sorgoleone with its precursors molecules. We find that interleaflet transfer is maximized for sorgoleone, suggesting that the precursor molecules may remain in the same leaflet for access by biosynthetic P450 enzymes. Since no sorgoleone was extracted during unbiased simulations, we compute a permeability coefficient using the inhomogeneous solubility diffusion model. The requisite free energy and diffusivity profiles for sorgoleone through a sorghum membrane model were determined through Replica Exchange Umbrella Sampling (REUS) simulations. The REUS calculations highlight that any soluble sorgoleone would quickly insert into a lipid bilayer, and would readily transit. When sorgoleone forms aggregates in root exudate as indicated by our equilibrium simulations, aggregate formation would lower the effective concentration in aqueous solution, creating a concentration gradient that would facilitate passive transport. This suggests that sorgoleone synthesis occurs within sorghum root cells and that sorgoleone is exuded by permeating through the cell membrane without the need for a transport protein once the extracellular sorgoleone aggregate is formed.

URLhttps://www.sciencedirect.com/science/article/pii/S0031942223003072
Short TitlePhytochemistry