Filtered Mass Density Function for Numerical Simulations of Spray Combustion

TitleFiltered Mass Density Function for Numerical Simulations of Spray Combustion
Publication TypeConference Paper
Year of Publication2008
AuthorsLi, Z, Jaberi, FA, Yaldizli, M
Conference Name46th AIAA Aerospace Sciences Meeting and Exhibit
Date Published01/2008
PublisherAIAA
Conference LocationReno, Nevada
Abstract

This paper briefly describes our recent efforts on the modeling and numerical simulations of two-phase turbulent reacting flows in realistic combustion systems with a new large-eddy simulation (LES) model. The model is constructed based on the two-phase extension of scalar filtered mass density function (FMDF) and a Lagrangian-Eulerian- Lagrangian mathematical/numerical methodology. In this methodology, the “resolved” fluid velocity field is obtained by solving the filtered form of the compressible Navier-Stokes equations with a high-order finite difference scheme. The liquid (droplet) phase and scalar (temperature and species mass fractions) fields are both obtained by stochastic Lagrangian models. There are two-way interactions between the phases and all the Eulerian and Lagrangian fields. The LES/FMDF is used for systematic analysis of turbulent combustion in the spray-controlled dump combustor and double-swirl spray burner for various flow and spray parameters. The effects of fuel type, spray angle, mass loading ratio, droplet size distribution, fuel/air composition, wall, and inflow/outflow conditions on the combustion are investigated. It has been found that the main features of the turbulence and combustion are modified by changing the inflow/outflow conditions. The LES/FMDF results also confirm the significance of the spray parameters.