The recently formulated completely renormalized coupled-cluster method with singles, doubles, and noniterative triples, exploiting the biorthogonal form of the method of moments of coupled-cluster equations (Piecuch, P.; Włoch, M. J. Chem. Phys. 2005, 123, 224105; Piecuch, P.; Włoch, M.; Gour, J. R.; Kinal, A. Chem. Phys. Lett. 2006, 418, 467), termed CR-CC(2,3), is extended to open-shell systems. Test calculations for bond breaking in the OH radical and the ion and singlet−triplet gaps in the CH2, HHeH, and (HFH)- biradical systems indicate that the CR-CC(2,3) approach employing the restricted open-shell Hartree−Fock (ROHF) reference is significantly more accurate than the widely used CCSD(T) method and other noniterative triples coupled-cluster approximations without making the calculations substantially more expensive. A few molecular examples, including the activation energies of the C2H4 + H → C2H5 forward and reverse reactions and the triplet states of the CH2 and H2Si2O2 biradicals, are used to show that the dependence of the ROHF-based CR-CC(2,3) energies on the method of canonicalization of the ROHF orbitals is, for all practical purposes, negligible.

VL - 111 IS - 44 ER - TY - JOUR T1 - Efficient Formulation and Computer Implementation of the Active-Space Electron-Attached and Ionized Equation-of-Motion Coupled-Cluster Methods JF - Journal of Chemical Physics Y1 - 2006 A1 - J. R Gour A1 - Piotr Piecuch KW - coupled cluster calculations KW - free radicals KW - organic compounds KW - sulphur compounds AB -The efficient, general-purpose implementations of the active-space electron-attached (EA) and ionized (IP) equation-of-motion coupled-cluster (EOMCC) methods including up to 3p-2h and 3h-2p excitations, called EA-EOMCCSDt and IP-EOMCCSDt, respectively, are discussed. The details of the algorithm that enables one to achieve a high degree of code vectorization for the active-space methods and the factorized forms of the EA- and IP-EOMCCSDt equations that maximize the benefits of using active orbitals in the process of selecting the dominant 3p-2h and 3h-2p excitations are presented. The results of benchmark calculations for the low-lying doublet and quartet states of the CH and SH radicals reveal that the active-space EA-EOMCCSDt and IP-EOMCCSDt methods are capable of producing results for the electronic excitations in open-shell systems that match the high accuracy of EA- and IP-EOMCC calculations with a full treatment of 3p-2h and 3h-2p excitations, even when the excited states of interest display a manifestly multideterminantal nature, with the costs that can be on the same order of those characterizing the basic EOMCC singles and doubles approach.

VL - 125 IS - 23 ER - TY - JOUR T1 - Experimental and Theoretical UV Characterizations of Acetyloacetone and its Isomers JF - The Journal of Physical Chemistry A Y1 - 2006 A1 - Piotr Piecuch A1 - S. Coussan A1 - Y. Ferro A1 - A. Trivella A1 - P. Roubin A1 - R. Wieczorek A1 - C. Manca A1 - K. Kowalski A1 - M. Wloch A1 - S. Kucharski A1 - M. Musial AB -Cryogenic matrix isolation experiments have allowed the measurement of the UV absorption spectra of the high-energy non-chelated isomers of acetylacetone, these isomers being produced by UV irradiation of the stable chelated form. Their identification has been done by coupling selective UV-induced isomerization, infrared spectroscopy, and harmonic vibrational frequency calculations using density functional theory. The relative energies of the chelated and non-chelated forms of acetylacetone in the S0 state have been obtained using density functional theory and coupled-cluster methods. For each isomer of acetylacetone, we have calculated the UV transition energies and dipole oscillator strengths using the excited-state coupled-cluster methods, including EOMCCSD (equation-of-motion coupled-cluster method with singles and doubles) and CR-EOMCCSD(T) (the completely renormalized EOMCC approach with singles, doubles, and non-iterative triples). For dipole-allowed transition energies, there is a very good agreement between experiment and theory. In particular, the CR-EOMCCSD(T) approach explains the blue shift in the electronic spectrum due to the formation of the non-chelated species after the UV irradiation of the chelated form of acetylacetone. Both experiment and CR-EOMCCSD(T) theory identify two among the seven non-chelated forms to be characterized by red-shifted UV transitions relative to the remaining five non-chelated isomers.

VL - 110 IS - 11 ER - TY - JOUR T1 - Extension of the Active-Space Equation-of- Motion Coupled-Cluster Methods to Radical Systems: The EA-EOMCCSDt and IPEOMCCSDt Approaches JF - International Journal of Quantum Chemistry Y1 - 2006 A1 - Piotr Piecuch A1 - J. R Gour A1 - M. Wloch KW - oupled-cluster theory;equation-of-a motion coupled-cluster method;active-space coupled-cluster approaches;electronic-attached and ionized states;radicals AB -The development of the active-space variants of the electron-attached (EA) and ionized (IP) equation-of-motion coupled-cluster (EOMCC) methods, in which higher-than-doubly excited components of the cluster operator T and higher than 2p-1h or 2h-1p components of the electron attaching and ionizing operators R are defined through the use of active orbitals, is discussed. As shown by preliminary test calculations of adiabatic excitation energies and potential energy curves for the low-lying states of the CH and OH radicals, the basic active-space EA-EOMCC and IP-EOMCC methods, referred to as the EA-EOMCCSDt and IP-EOMCCSDt approaches, are capable of accuratelydescribing the ground and excited states of open-shell systems, even at the moderately stretched nuclear geometries and even for states with a strong multi-determinantal or doubly excited character, at the low costs that are on the order of those characterizing the standard EOMCC singles and doubles method.

VL - 106 IS - 14 ER - TY - JOUR T1 - Extrapolating Potential Energy Surfaces by Scaling Electron Correlation at a Single Geometry JF - Chemical Physics Letters Y1 - 2006 A1 - A.J.C. Varandas A1 - Piotr Piecuch AB -It is shown that the molecular potential energy surface corresponding to a high level of ab initio theory can be accurately predicted by performing calculations with smaller basis sets and then scaling the electron correlation at a single point calculated with the larger target basis set.

VL - 430 IS - 4-6 ER - TY - JOUR T1 - Extension of Renormalized Coupled-Cluster Methods Including Triple Excitations to Electronic States of Open-Shell Molecules JF - The Journal of Chemical Physics Y1 - 2005 A1 - Piotr Piecuch A1 - M. Wloch A1 - J. R Gour A1 - K. Kowalski AB -The general-purpose open-shell implementation of the completely renormalized equation-of-motion coupled-cluster approach with singles, doubles, and noniterative triples [CR-EOMCCSD(T)] is reported. Benchmark calculations for the low-lying doublet and quartet states of the CH radical show that the CR-EOMCCSD(T) method is capable of providing a highly accurate description of ground and excited states of open-shell molecules. This includes states with strong double excitation character, for which the conventional EOMCCSD approach fails.

VL - 122 IS - 21 ER - TY - JOUR T1 - Extensive Generalization of Renormalized Coupled-Cluster Methods JF - The Journal of Chemical Physics Y1 - 2005 A1 - Piotr Piecuch A1 - K. Kowalski AB -The recently developed completely renormalized (CR) coupled-cluster (CC) methods with singles, doubles, and noniterative triples or triples and quadruples [CR-CCSD(T) or CR-CCSD(TQ), respectively], which are based on the method of moments of CC equations (MMCC) [K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000)], eliminate the failures of the standard CCSD(T) and CCSD(TQ) methods at larger internuclear separations, but they are not rigorously size extensive. Although the departure from strict size extensivity of the CR-CCSD(T) and CR-CCSD(TQ) methods is small, it is important to examine the possibility of formulating the improved CR-CC methods, which are as effective in breaking chemical bonds as the existing CR-CCSD(T) and CR-CCSD(TQ) approaches, which are as easy to use as the CR-CCSD(T) and CR-CCSD(TQ) methods, and which can be made rigorously size extensive. This may be particularly useful for the applications of CR-CC methods and other MMCC approaches in calculations of potential energy surfaces of large many-electron systems and van der Waals molecules, where the additive separability of energies in the noninteracting limit is very important. In this paper, we propose different types of CR-CC approximations, termed the locally renormalized (LR) CCSD(T) and CCSD(TQ) methods, which become rigorously size extensive if the orbitals are localized on nointeracting fragments. The LR-CCSD(T) and LR-CCSD(TQ) methods rely on the form of the energy expression in terms of the generalized moments of CC equations, derived in this work, termed the numerator-denominator-connected MMCC expansion. The size extensivity and excellent performance of the LR-CCSD(T) and LR-CCSD(TQ) methods are illustrated numerically by showing the results for the dimers of stretched HF and LiH molecules and bond breaking in HF and H2O.

VL - 122 IS - 7 ER -