The shear rate dependence of the slip length in thin polymer films confined between atomically flat surfaces is investigated by molecular dynamics simulations. The polymer melt is described by the bead-spring model of linear flexible chains. We found that at low shear rates the velocity profiles acquire a pronounced curvature near the wall and the absolute value of the negative slip length is approximately equal to the thickness of the viscous interfacial layer. At higher shear rates, the velocity profiles become linear and the slip length increases rapidly as a function of shear rate. The gradual transition from no-slip to steady-state slip flow is associated with faster relaxation of the polymer chains near the wall evaluated from decay of the time autocorrelation function of the first normal mode. We also show that at high melt densities the friction coefficient at the interface between the polymer melt and the solid wall follows a power-law decay as a function of the slip velocity. At large slip velocities the friction coefficient is determined by the product of the surface-induced peak in the structure factor, the temperature, and the contact density of the first fluid layer near the solid wall.

1 aPriezjev, N., V uhttps://icer.msu.edu/research/publications/shear-rate-threshold-boundary-slip-dense-polymer-films01604nas a2200193 4500008004100000245009100041210006900132260001200201490000700213520093400220653002301154653001501177653001601192653001801208653002801226100001801254700002001272856011801292 2008 eng d00aSlip boundary conditions for shear flow of polymer melts past atomically flat surfaces0 aSlip boundary conditions for shear flow of polymer melts past at c04/20080 v773 aMolecular dynamics simulations are carried out to investigate the dynamic behavior of the slip length in thin polymer films confined between atomically smooth thermal surfaces. For weak wall-fluid interactions, the shear rate dependence of the slip length acquires a distinct local minimum followed by a rapid growth at higher shear rates. With increasing fluid density, the position of the local minimum is shifted to lower shear rates. We found that the ratio of the shear viscosity to the slip length, which defines the friction coefficient at the liquid/solid interface, undergoes a transition from a nearly constant value to power law decay as a function of the slip velocity. In a wide range of shear rates and fluid densities, the friction coefficient is determined by the product of the value of the surface-induced peak in the structure factor and the contact density of the first fluid layer near the solid wall.

10amolecular dynamics10ashear rate10aslip length10aslip velocity10asmooth thermal surfaces1 aNiavarani, A.1 aPriezjev, N., V uhttps://icer.msu.edu/research/publications/slip-boundary-conditions-shear-flow-polymer-melts-past-atomically-flat