The filtered mass density function (FMDF) model (Jaberi et al. 1999 [1]) is employed for large eddy simulations (LES) of “high speed” partially-premixed methane jet flames with the “flamelet” and “finite-rate” kinetics models. The FMDF is the joint probability density function (PDF) of the scalars and is determined via the solution of a set of stochastic differential equations. The LES/FMDF is implemented using a highly scalable, parallel hybrid Eulerian–Lagrangian numerical scheme. The LES/FMDF results are shown to compare well with the experimental data for all flow conditions when “appropriate” reaction and mixing models are employed.

10aFiltered mass density function; PDF methods; Monte-Carlo simulations; Methane jet flames10aLES1 aYaldizli, M.1 aMehravaran, K.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/large-eddy-simulations-turbulent-methane-jet-flames-filtered-mass-density-001283nas a2200133 4500008004100000245009500041210006900136260005900205520071100264100001700975700001900992700001701011856012101028 2009 eng d00aLarge-Eddy Simulations of Turbulent Methane Jet Flames with Filtered Mass Density Function0 aLargeEddy Simulations of Turbulent Methane Jet Flames with Filte aAnn Arbor, MichiganbThe Combustion Institutec05/20093 aThe filtered mass density function (FMDF) model (Jaberi et al. 1999 [1]) is employed for large eddy simulations (LES) of “high speed” partially-premixed methane jet flames with the “flamelet” and “finite-rate” kinetics models. The FMDF is the joint probability density function (PDF) of the scalars and is determined via the solution of a set of stochastic differential equations. The LES/FMDF is implemented using a highly scalable, parallel hybrid Eulerian–Lagrangian numerical scheme. The LES/FMDF results are shown to compare well with the experimental data for all flow conditions when “appropriate” reaction and mixing models are employed.

1 aYaldizli, M.1 aMehravaran, K.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/large-eddy-simulations-turbulent-methane-jet-flames-filtered-mass-density