Linear gas stoppers are widely used to convert high-energy, rare-isotope beams and reaction products into low-energy beams with small transverse emittance and energy spread. Stopping of the high-energy ions is achieved through interaction with a buffer gas, typically helium, generating large quantities of He+/e− pairs. The Advanced Cryogenic Gas Stopper (ACGS) was designed for fast, efficient stopping and extraction of high-intensity, rare-isotope beams. As part of the design process, a comprehensive particle-in-cell code was developed to optimize the transport and extraction of rare isotopes from the ACGS in the presence of space charge, including He+/e− dynamics, buffer gas interactions including gas flow, radio-frequency carpets, and ion extraction through a nozzle or orifice. Details of the simulations are presented together with comparison to experiment when available.

10aGas stopper10aParticle-in-cell method10aSpace charge1 aRingle, R.1 aBollen, G.1 aLund, K.1 aNicoloff, C.1 aSchwarz, S.1 aSumithrarachchi, C.S.1 aVillari, A.C.C. uhttps://www.sciencedirect.com/science/article/pii/S0168583X2100111703088nas a2200253 4500008004100000022001400041245011400055210006900169300001200238490000800250520227400258653002902532653002402561653003102585653001902616653001902635100001602654700001802670700002502688700001802713700001402731700001702745856007202762 2021 eng d a1462-901100aSynthesizing social and environmental sensing to monitor the impact of large-scale infrastructure development0 aSynthesizing social and environmental sensing to monitor the imp a527-5400 v1243 aThe booming development of large-scale infrastructure projects (LSIPs) facilitated by China’s Belt and Road Initiative (BRI) has drawn global concern regarding the scale, pace, and potential impact. Studies have largely focused on the geopolitical impact (i.e., politics and international relations) but less is known about social and environmental impact. This is in large part because consistent, high-resolution, cross-boundary social and environmental data at large scales are rather limited. To address the knowledge gap, this research developed a novel Socio-Environmental Sensing (SES) approach by synthesizing remote sensing imagery and geotagged Twitter data to map the socio-environmental impact of LSIPs. We demonstrated the applicability of this approach using two BRI flagship projects, namely, the Mombasa-Nairobi Standard Gauge Railway (SGR) in Kenya and the China-Pakistan Economic Corridor (CPEC) in Pakistan. Our analysis shows that both projects have led to a substantial loss of natural land (e.g., 3.7 % loss of vegetation in Kenya, and 23.3 % reduction of the glacier in Pakistan) but gains in artificial land (e.g., 4.2 % increase in cropland in Kenya, and 34.6 % expansion of built-up land in Pakistan). In addition, the BRI-LSIPs have largely improved local economic development, because nighttime light imagery revealed that regions near the BRI-LSIP sites became much brighter than other regions. Regarding the social aspect, we found that public sentiment toward the projects was largely positive and improved over time, which contradicts the prevalent pessimism to BRI-LSIPs by critics. Nevertheless, sentiment also presented strong spatial heterogeneity – regions around the BRI transportation hubs (usually large cities) most showed more positive sentiment than other regions. By spatially joining the georeferenced sentiment scores with environmental indicators from remote sensing, we further found that positive sentiment improved more in more developed regions, but only changed slightly in other regions. This study provides a novel approach to assess the socio-environmental impact of large-scale projects, and the findings would be useful for informing the implementation of future BRI projects across the globe.

10aBelt and road initiative10aIntegrated analysis10aLarge-scale infrastructure10aRemote sensing10aSocial sensing1 aLi, Yingjie1 aZhang, Yuqian1 aTiffany, Leigh, Anne1 aChen, Ruishan1 aCai, Meng1 aLiu, Jianguo uhttps://www.sciencedirect.com/science/article/pii/S146290112100205702313nas a2200253 4500008004100000022001400041245006500055210006200120300001100182490000800193520153300201653002501734653002501759653003301784653002701817653002801844653001801872100001901890700001501909700001501924700002601939700002301965856007101988 2020 eng d a0012-821X00aGlobal variations of Earth's 520- and 560-km discontinuities0 aGlobal variations of Earths 520 and 560km discontinuities a1166000 v5523 aWe investigate seismic discontinuities in the mantle transition zone (MTZ) by analyzing SS precursors recorded at global seismic stations. Our observations confirm the global existence of the 520-km discontinuity. Although substantial regional depth variations in the 520-km discontinuity are generally correlated with temperature in the mid-MTZ, they cannot be fully explained by the Clapeyron slope of the wadsleyite-ringwoodite phase transition, suggesting both thermal and compositional heterogeneities in the MTZ. A second discontinuity at âŒ560-km depth, previously interpreted as splitting of the 520-km discontinuity, is most commonly detected in cold subduction zones and hot mantle regions. The depth separation between the 520- and 560-km discontinuities varies from âŒ80 km in cold regions to âŒ40 km in hot areas. The exsolution of calcium-perovskite (Ca-pv) from majorite garnet has been proposed to explain the velocity and density changes across the 560-km discontinuity. However, the gradual exsolution of perovskite and partitioning of Ca and Al between perovskite and garnet appear inconsistent with the relatively âsharpâ discontinuity in seismic observations and thus need to be revisited in the future. Nevertheless, because the only known transition in major minerals at this depth in the MTZ is the formation of Ca-pv, the existence of the 560-km discontinuity may imply localized high calcium concentrations in the mid-MTZ possibly related to the recycling of oceanic crust.

10a520-km discontinuity10a560-km discontinuity10amantle phase transformations10amantle transition zone10aoceanic crust recycling10aSS precursors1 aTian, Dongdong1 aLv, Mingda1 aWei, Shawn1 aDorfman, Susannah, M.1 aShearer, Peter, M. uhttp://www.sciencedirect.com/science/article/pii/S0012821X2030544601979nas a2200181 4500008004100000022001400041245009400055210006900149300001400218490000800232520138200240100002501622700002301647700003301670700001901703700001901722856005601741 2020 eng d a0036-807500aOceanic plateau of the Hawaiian mantle plume head subducted to the uppermost lower mantle0 aOceanic plateau of the Hawaiian mantle plume head subducted to t a983–9870 v3703 aVolcanic island and seamount chains form from deep-seated plumes of hot material upwelling through the mantle. The most famous of these is the Hawaiian-Emperor seamount chain. However, a large volcanic structure associated with a plume head that should precede the chain has long been missing. Wei et al. finally identified the likely location of this structure in the mantle under eastern Russia. The structure was likely subducted 20 million to 30 million years ago, and the location helps constrain several geodynamic processes.Science, this issue p. 983The Hawaiian-Emperor seamount chain that includes the Hawaiian volcanoes was created by the Hawaiian mantle plume. Although the mantle plume hypothesis predicts an oceanic plateau produced by massive decompression melting during the initiation stage of the Hawaiian hot spot, the fate of this plateau is unclear. We discovered a megameter-scale portion of thickened oceanic crust in the uppermost lower mantle west of the Sea of Okhotsk by stacking seismic waveforms of SS precursors. We propose that this thick crust represents a major part of the oceanic plateau that was created by the Hawaiian plume head 100 million years ago and subducted 20 million to 30 million years ago. Our discovery provides temporal and spatial clues of the early history of the Hawaiian plume for future plate reconstructions.

1 aWei, Songqiao, Shawn1 aShearer, Peter, M.1 aLithgow-Bertelloni, Carolina1 aStixrude, Lars1 aTian, Dongdong uhttps://science.sciencemag.org/content/370/6519/98301517nas a2200577 4500008004100000245010300041210006900144260001200213490000800225100001500233700001500248700001900263700001900282700001400301700001800315700001500333700001700348700001500365700002200380700001300402700001500415700001500430700001300445700001500458700001400473700001700487700001900504700001400523700001400537700001500551700001300566700001600579700001600595700001900611700001600630700001600646700001600662700001500678700001400693700001400707700001400721700001400735700001500749700001600764700001900780700001800799700001600817700001500833700001900848856007200867 2014 eng d00aDetermining the rp-Process Flow through 56Ni: Resonances in 57Cu(p,g)58Zn Indentified with GRETINA0 aDetermining the rpProcess Flow through 56Ni Resonances in 57Cupg c07/20140 v1131 aLanger, C.1 aMontes, F.1 aAprahamian, A.1 aBardayan, D.W.1 aBazin, D.1 aBrown, B., A.1 aBrowne, J.1 aCrawford, H.1 aCyburt, R.1 aDomingo-Pardo, C.1 aGade, A.1 aGeorge, S.1 aHosmer, P.1 aKeek, L.1 aKontos, A.1 aLee, I.Y.1 aLemasson, A.1 aLunderberg, E.1 aMaeda, Y.1 aMatos, M.1 aMeisel, Z.1 aNoji, S.1 aNunes, F.M.1 aNystrom, A.1 aPerdikakis, G.1 aPereira, J.1 aQuinn, S.J.1 aRecchia, F.1 aSchatz, H.1 aScott, M.1 aSiegl, K.1 aSimon, A.1 aSmith, M.1 aSpyrou, A.1 aStevens, J.1 aStroberg, S.R.1 aWeisshaar, D.1 aWheeler, J.1 aWimmer, K.1 aZegers, R.G.T. uhttp://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.03250201103nas a2200361 4500008004100000245007800041210006900119260001200188490000800200100002500208700002200233700001900255700002000274700002100294700002100315700002500336700002400361700002300385700002000408700002300428700001800451700002400469700002400493700001700517700002200534700002400556700002300580700002000603700002400623700002200647700002200669856005000691 2014 eng d00aGill bacteria enable a novel digestive strategy in a wood-feeding mollusk0 aGill bacteria enable a novel digestive strategy in a woodfeeding c11/20140 v1111 aO'Connor, Roberta, M1 aFung, Jennifer, M1 aSharp, Koty, H1 aBenner, Jack, S1 aMcClung, Colleen1 aCushing, Shelley1 aLamkin, Elizabeth, R1 aFomenkov, Alexey, I1 aHenrissat, Bernard1 aLonder, Yuri, Y1 aScholz, Matthew, B1 aPosfai, Janos1 aMalfatti, Stephanie1 aTringe, Susannah, G1 aWoyke, Tanja1 aMalmstrom, Rex, R1 aColeman-Derr, Devin1 aAltamia, Marvin, A1 aDedrick, Sandra1 aKaluziak, Stefan, T1 aHaywood, Margo, G1 aDistel, Daniel, L uhttp://www.pnas.org/content/111/47/E5096.full00748nas a2200241 4500008004100000245008800041210006900129260001200198490000700210100001800217700001800235700002000253700002500273700002200298700001800320700002100338700001700359700001600376700001600392700001700408700001300425856006800438 2014 eng d00aHigh-precision B(E2) Measurements of Semi-Magic 58,60,62,64Ni by Coulomb Excitation0 aHighprecision BE2 Measurements of SemiMagic 58606264Ni by Coulom c09/20140 v901 aAllmond, J.M.1 aBrown, B., A.1 aStuchbery, A.E.1 aGalindo-Uribarri, A.1 aPadilla-Rodal, E.1 aRadford, D.C.1 aBatchelder, J.C.1 aHoward, M.E.1 aLiang, J.F.1 aManning, B.1 aVarner, R.L.1 aYu, C.H. uhttp://journals.aps.org/prc/abstract/10.1103/PhysRevC.90.03430900830nas a2200265 4500008004100000245009900041210007100140260001200211490000700223100001400230700002600244700001800270700001700288700002100305700001700326700001700343700001500360700001900375700001800394700001700412700002200429700001500451700001800466856008000484 2014 eng d00aHigh-resolution two-proton stripping to 2p-1h 7/2− states via the 59Co(3He,nγ)61Cu reaction0 aHighresolution twoproton stripping to 2p1h 72− states via the 59 c10/20140 v501 aPapka, P.1 aSharpey-Schafer, J.F.1 aBrown, B., A.1 aDinoko, T.S.1 aKhaleel, E.A.M.A1 aLawrie, E.A.1 aLawrie, J.J.1 aLi, K.C.W.1 aMajola, S.N.T.1 aRichter, W.A.1 aShirinda, O.1 aStankiewicz, M.A.1 aVymers, P.1 aWiedeking, M. uhttps://people.nscl.msu.edu/~brown/brown-all-papers/541-2014-epja50.158.pdf00411nas a2200109 4500008004100000245007600041210006900117490000800186100001800194700001700212856007200229 2014 eng d00aLarge Low-Energy M1 Strength for 56,57Fe Within the Nuclear Shell Model0 aLarge LowEnergy M1 Strength for 5657Fe Within the Nuclear Shell 0 v1131 aBrown, B., A.1 aLarsen, R.C. uhttp://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.25250200465nas a2200121 4500008004100000245009900041210006900140490000700209100002200216700001100238700001700249856007700266 2014 eng d00aNumerical Investigations of Shock Wave Interactions with a Supersonic Turbulent Boundary Layer0 aNumerical Investigations of Shock Wave Interactions with a Super0 v261 aJammalamadaka, A.1 aLi, Z.1 aJaberi, F.A. uhttp://scitation.aip.org/content/aip/journal/pof2/26/5/10.1063/1.487349501353nas a2200529 4500008004100000245006100041210005900102260001200161490000700173100001900180700001500199700002300214700001600237700001800253700001900271700001400290700001200304700001900316700001900335700001500354700002000369700001700389700001300406700001900419700001500438700001700453700001800470700001400488700001200502700001400514700001200528700001100540700001800551700002000569700001700589700001200606700001800618700001400636700001300650700001600663700001700679700001600696700001500712700001300727700001500740856006800755 2014 eng d00aShell and Shape Evolution at N=28: The 40Mg Ground State0 aShell and Shape Evolution at N28 The 40Mg Ground State c04/20140 v801 aCrawford, H.L.1 aFallon, P.1 aMacchiavelli, A.O.1 aClark, R.M.1 aBrown, B., A.1 aTostevin, J.A.1 aBazin, D.1 aAoi, N.1 aDoornenbal, P.1 aMatsushita, M.1 aScheit, H.1 aSteppenbeck, D.1 aTakeuchi, S.1 aBaba, H.1 aCampbell, C.M.1 aCromaz, M.1 aIdeguchi, E.1 aKobayashi, N.1 aKondo, Y.1 aLee, G.1 aLee, I.Y.1 aLee, J.1 aLi, K.1 aMichimasa, S.1 aMotobayashi, T.1 aNakamura, T.1 aOta, S.1 aPaschalis, S.1 aPetri, M.1 aSako, T.1 aSakurai, H.1 aShimoura, S.1 aTakechi, M.1 aTogano, Y.1 aWang, H.1 aYoneda, K. uhttp://journals.aps.org/prc/abstract/10.1103/PhysRevC.89.04130300473nas a2200109 4500008004100000245013600041210006900177490000700246100003000253700002200283856005800305 2014 eng d00aSpatially-Explicit Integrated Uncertainty and Sensitivity Analysis of Criteria Weights in Multicriteria Land Suitability Evaluation0 aSpatiallyExplicit Integrated Uncertainty and Sensitivity Analysi0 v571 aLigmann-Zielinskaa, Arika1 aJankowskib, Piotr uhttp://www.geo.msu.edu/~stsa/pubs/EMS2014_reprint.pdf00479nas a2200121 4500008004100000245008100041210006900122490000800191100002000199700001700219700001100236856011000247 2014 eng d00aTwo-Phase Filtered Mass Density Function for LES of Turbulent Reacting Flows0 aTwoPhase Filtered Mass Density Function for LES of Turbulent Rea0 v7601 aBanaeizadeh, A.1 aJaberi, F.A.1 aLi, Z. uhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9402098&fileId=S002211201400573400727nas a2200181 4500008004100000245016300041210006900204260001200273490000700285100001400292700001800306700001900324700001600343700002200359700002300381700001600404856012500420 2014 eng d00aWRF Model Sensitivity to Land Surface Model and Cumulus Parameterization under Short-Term Climate Extremes over the Southern Great Plains of the United States0 aWRF Model Sensitivity to Land Surface Model and Cumulus Paramete c10/20140 v271 aPei, Lisi1 aMoore, Nathan1 aZhong, Shiyuan1 aLuo, Lifeng1 aHyndman, David, W1 aHeilman, Warren, E1 aGao, Zhiqiu uhttps://icer.msu.edu/research/publications/wrf-model-sensitivity-land-surface-model-cumulus-parameterization-under-short00445nas a2200109 4500008004100000245006900041210006800110260001600178100002900194700001700223856009500240 2013 eng d00aGadget Avalanche: A Technology Literacy Course for Novice Adults0 aGadget Avalanche A Technology Literacy Course for Novice Adults aAtlanta, GA1 aLuchini-Colbry, Kathleen1 aColbry, Dirk uhttp://www.asee.org/file_server/papers/attachment/file/0003/4344/ASEE2013-Gadget-FINAL.pdf00703nas a2200217 4500008004100000245005900041210005400100300001400154490000800168653001900176653002800195653004000223100002300263700002000286700002000306700001600326700001800342700001900360700001600379856009000395 2013 eng d00aThe nature of the H₂-emitting gas in the Crab nebula0 anature of the H₂emitting gas in the Crab nebula a1257-12790 v43010aISM: molecules10aISM: supernova remnants10asupernovae: individual: Crab nebula1 aRichardson, C., T.1 aBaldwin, J., A.1 aFerland, G., J.1 aLoh, E., D.1 aKuehn, C., A.1 aFabian, A., C.1 aSalomé, P. uhttps://icer.msu.edu/research/publications/nature-h%E2%82%82-emitting-gas-crab-nebula00459nas a2200109 4500008004100000245009000041210006900131260002500200100001700225700002900242856007800271 2013 eng d00aSTEM inSight: Developing a Research Skills Course for First- and Second-Year Students0 aSTEM inSight Developing a Research Skills Course for First and S aAtlanta, GAc06/20131 aColbry, Dirk1 aLuchini-Colbry, Kathleen uhttp://www.asee.org/file_server/papers/attachment/file/0003/3803/6188.pdf00509nas a2200121 4500008004100000245009000041210006900131490001200200100002200212700001100234700001700245856012500262 2013 eng d00aSubgrid-Scale Models for Large-Eddy Simulations of Shock-Boundary Layer Interactions,0 aSubgridScale Models for LargeEddy Simulations of ShockBoundary L0 v Vol. 51 aJammalamadaka, A.1 aLi, Z.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/subgrid-scale-models-large-eddy-simulations-shock-boundary-layer-interactions00520nas a2200133 4500008004100000245008600041210007000127300001400197490000600211100001400217700001800231700001300249856012400262 2012 eng d00aAggregation of α-synuclein is kinetically controlled by intramolecular diffusion0 aAggregation of αsynuclein is kinetically controlled by intramole a2336-23410 v71 aAhmad, B.1 aLapidus, L.J.1 aChen, Y. uhttps://icer.msu.edu/research/publications/aggregation-%CE%B1-synuclein-kinetically-controlled-intramolecular-diffusion01651nas a2200553 4500008004100000245022000041210006900261260001200330653006000342100001500402700001500417700001500432700001200447700001400459700001300473700001200486700001300498700001600511700001700527700001300544700001700557700001500574700001500589700001800604700001800622700001200640700001500652700001300667700001400680700001900694700001800713700001500731700001800746700001200764700001500776700001500791700001500806700002000821700001400841700001400855700001200869700001800881700001600899700001400915700001500929700001300944700001400957856012600971 2012 eng d00aA Census of Star-Forming Galaxies in the z~9-10 Universe based on HST+Spitzer Observations Over 19 CLASH clusters: Three Candidate z~9-10 Galaxies and Improved Constraints on the Star Formation Rate Density at z~9.20 aCensus of StarForming Galaxies in the z910 Universe based on HST c11/201210aAstrophysics - Cosmology and Extragalactic Astrophysics1 aBouwens, R1 aBradley, L1 aZitrin, A.1 aCoe, D.1 aFranx, M.1 aZheng, W1 aSmit, R1 aHost, O.1 aPostman, M.1 aMoustakas, L1 aLabbe, I1 aCarrasco, M.1 aMolino, A.1 aDonahue, M1 aKelson, D., D1 aMeneghetti, M1 aJha, S.1 aBenitez, N1 aLemze, D1 aUmetsu, K1 aBroadhurst, T.1 aMoustakas, J.1 aRosati, P.1 aBartelmann, M1 aFord, H1 aGraves, G.1 aGrillo, C.1 aInfante, L1 aJiminez-Teja, Y1 aJouvel, S1 aLahav, O.1 aMaoz, D1 aMedezinski, E1 aMelchior, P1 aMerten, J1 aNonino, M.1 aOgaz, S.1 aSeitz, S. uhttps://icer.msu.edu/research/publications/census-star-forming-galaxies-z9-10-universe-based-hstspitzer-observations-over01350nas a2200457 4500008004100000245009300041210006900134260001200203490000800215653001600223653003200239653005400271653002800325653003400353100001500387700001800402700001500420700001200435700002200447700001600469700001100485700001300496700001700509700001600526700001900542700001200561700001300573700001400586700001800600700001800618700001500636700001500651700001500666700001500681700001300696700001800709700001500727700001500742700001300757856012200770 2012 eng d00aCLASH: Discovery of a Bright z ~= 6.2 Dwarf Galaxy Quadruply Lensed by MACS J0329.6-02110 aCLASH Discovery of a Bright z 62 Dwarf Galaxy Quadruply Lensed b c03/20120 v74710adark matter10agalaxies: clusters: general10agalaxies: clusters: individual: MACS J0329.6-021110aGalaxies: High-Redshift10agravitational lensing: strong1 aZitrin, A.1 aMoustakas, J.1 aBradley, L1 aCoe, D.1 aMoustakas, L., A.1 aPostman, M.1 aShu, X1 aZheng, W1 aBenítez, N.1 aBouwens, R.1 aBroadhurst, T.1 aFord, H1 aHost, O.1 aJouvel, S1 aKoekemoer, A.1 aMeneghetti, M1 aRosati, P.1 aDonahue, M1 aGrillo, C.1 aKelson, D.1 aLemze, D1 aMedezinski, E1 aMolino, A.1 aNonino, M.1 aOgaz, S. uhttps://icer.msu.edu/research/publications/clash-discovery-bright-z-62-dwarf-galaxy-quadruply-lensed-macs-j03296-021102193nas a2200733 4500008004100000245009800041210006900139260001200208490000800220653002800228653001600256653005400272653003400326653003200360100002000392700002300412700001800435700001900453700001600472700002000488700002000508700002300528700001900551700002200570700001300592700001800605700002100623700001900644700001700663700002200680700001900702700002100721700001800742700002200760700001800782700002000800700002000820700002100840700002000861700001800881700002200899700001900921700001800940700002200958700001400980700001700994700002001011700002401031700002401055700002501079700002201104700002101126700001901147700001801166700002701184700001901211700001601230700002001246700002001266700001501286700001801301700001501319856012501334 2012 eng d00aCLASH: Mass Distribution in and around MACS J1206.2-0847 from a Full Cluster Lensing Analysis0 aCLASH Mass Distribution in and around MACS J120620847 from a Ful c08/20120 v75510acosmology: observations10adark matter10agalaxies: clusters: individual: MACS J1206.2-084710agravitational lensing: strong10agravitational lensing: weak1 aUmetsu, Keiichi1 aMedezinski, Elinor1 aNonino, Mario1 aMerten, Julian1 aZitrin, Adi1 aMolino, Alberto1 aGrillo, Claudio1 aCarrasco, Mauricio1 aDonahue, Megan1 aMahdavi, Andisheh1 aCoe, Dan1 aPostman, Marc1 aKoekemoer, Anton1 aCzakon, Nicole1 aSayers, Jack1 aMroczkowski, Tony1 aGolwala, Sunil1 aKoch, Patrick, M1 aLin, Kai-Yang1 aMolnar, Sandor, M1 aRosati, Piero1 aBalestra, Italo1 aMercurio, Amata1 aScodeggio, Marco1 aBiviano, Andrea1 aAnguita, Timo1 aInfante, Leopoldo1 aSeidel, Gregor1 aSendra, Irene1 aJouvel, Stephanie1 aHost, Ole1 aLemze, Doron1 aBroadhurst, Tom1 aMeneghetti, Massimo1 aMoustakas, Leonidas1 aBartelmann, Matthias1 aBenítez, Narciso1 aBouwens, Rychard1 aBradley, Larry1 aFord, Holland1 aJiménez-Teja, Yolanda1 aKelson, Daniel1 aLahav, Ofer1 aMelchior, Peter1 aMoustakas, John1 aOgaz, Sara1 aSeitz, Stella1 aZheng, Wei uhttps://icer.msu.edu/research/publications/clash-mass-distribution-around-macs-j12062-0847-full-cluster-lensing-analysis01974nas a2200733 4500008004100000245008800041210006900129260001200198490000800210653001600218653003200234653005600266653002800322653003400350100001500384700001500399700001500414700001500429700001600444700001200460700001400472700001500486700001900501700001400520700001700534700001600551700001700567700001700584700001500601700001200616700001300628700002000641700001800661700001300679700001800692700001600710700001400726700001500740700001300755700001500768700001500783700001200798700001500810700001400825700001400839700001300853700001700866700001200883700001600895700001800911700001600929700001800945700001400963700001500977700002200992700001301014700001401027700001501041700001401056700001401070700001401084700002001098856012201118 2012 eng d00aCLASH: New Multiple Images Constraining the Inner Mass Profile of MACS J1206.2-08470 aCLASH New Multiple Images Constraining the Inner Mass Profile of c04/20120 v74910adark matter10agalaxies: clusters: general10agalaxies: clusters: individual: MACS J1206.2–084710aGalaxies: High-Redshift10agravitational lensing: strong1 aZitrin, A.1 aRosati, P.1 aNonino, M.1 aGrillo, C.1 aPostman, M.1 aCoe, D.1 aSeitz, S.1 aEichner, T1 aBroadhurst, T.1 aJouvel, S1 aBalestra, I.1 aMercurio, A1 aScodeggio, M1 aBenítez, N.1 aBradley, L1 aFord, H1 aHost, O.1 aJimenez-Teja, Y1 aKoekemoer, A.1 aZheng, W1 aBartelmann, M1 aBouwens, R.1 aCzoske, O1 aDonahue, M1 aGraur, O1 aGraves, G.1 aInfante, L1 aJha, S.1 aKelson, D.1 aLahav, O.1 aLazkoz, R1 aLemze, D1 aLombardi, M.1 aMaoz, D1 aMcCully, C.1 aMedezinski, E1 aMelchior, P1 aMeneghetti, M1 aMerten, J1 aMolino, A.1 aMoustakas, L., A.1 aOgaz, S.1 aPatel, B.1 aRegoes, E.1 aRiess, A.1 aRodney, S1 aUmetsu, K1 aVan der Wel, A. uhttps://icer.msu.edu/research/publications/clash-new-multiple-images-constraining-inner-mass-profile-macs-j12062-084701835nas a2200637 4500008004100000245007600041210006900117260001200186490000800198100001300206700002000219700001600239700001900255700002300274700001800297700002300315700001800338700002400356700002300380700002400403700002200427700001900449700002100468700001500489700001800504700002000522700002200542700001700564700002200581700001500603700002000618700001400638700001800652700002000670700001800690700002700708700002000735700002000755700001700775700002500792700002200817700002100839700001400860700002200874700001600896700002200912700001900934700002400953700001400977700002400991700001901015700001601034700001801050700001801068856011101086 2012 eng d00aCLASH: Precise New Constraints on the Mass Profile Galaxy Cluster A22610 aCLASH Precise New Constraints on the Mass Profile Galaxy Cluster c09/20120 v7571 aCoe, Dan1 aUmetsu, Keiichi1 aZitrin, Adi1 aDonahue, Megan1 aMedezinski, Elinor1 aPostman, Marc1 aCarrasco, Mauricio1 aAnguita, Timo1 aGeller, Margaret, J1 aRines, Kenneth, J.1 aDiaferio, Antonaldo1 aKurtz, Michael, J1 aBradley, Larry1 aKoekemoer, Anton1 aZheng, Wei1 aNonino, Mario1 aMolino, Alberto1 aMahdavi, Andisheh1 aLemze, Doron1 aInfante, Leopoldo1 aOgaz, Sara1 aMelchior, Peter1 aHost, Ole1 aFord, Holland1 aGrillo, Claudio1 aRosati, Piero1 aJiménez-Teja, Yolanda1 aMoustakas, John1 aAscaso, Begoña1 aLahav, Ofer;1 aBartelmann, Matthias1 aBenítez, Narciso1 aBouwens, Rychard1 aGraur, Or1 aGraves, Genevieve1 aJha, Saurab1 aJouvel, Stephanie1 aKelson, Daniel1 aMoustakas, Leonidas1 aMaoz, Dan1 aMeneghetti, Massimo1 aMerten, Julian1 aRiess, Adam1 aRodney, Steve1 aSeitz, Stella uhttps://icer.msu.edu/research/publications/clash-precise-new-constraints-mass-profile-galaxy-cluster-a226100497nas a2200121 4500008004100000245008500041210007000126300001400196490000700210100001400217700001800231856012600249 2012 eng d00aCurcumin Prevents Aggregation in α-Synuclein by Increasing Reconfiguration Rate0 aCurcumin Prevents Aggregation in αSynuclein by Increasing Reconf a9193-91990 v121 aAhmad, B.1 aLapidus, L.J. uhttps://icer.msu.edu/research/publications/curcumin-prevents-aggregation-%CE%B1-synuclein-increasing-reconfiguration-rate00495nas a2200109 4500008004100000245008600041210006900127260002300196100001700219700002500236856012400261 2012 eng d00aCyberGreen: Hands-On Engineering Research in Sustainability and Supercomputing”0 aCyberGreen HandsOn Engineering Research in Sustainability and Su aAda, Ohioc03/20121 aColbry, Dirk1 aLuchini-Colbry, Katy uhttps://icer.msu.edu/research/publications/cybergreen-hands-engineering-research-sustainability-supercomputing%E2%80%9D00586nas a2200157 4500008004100000245009300041210006900134490000700203100001800210700001300228700001600241700001600257700001800273700001600291856012100307 2012 eng d00aEvaluating DEM source and resolution uncertainties in the Soil and Water Assessment Tool0 aEvaluating DEM source and resolution uncertainties in the Soil a0 v271 aLin, Shengpan1 aJing, C.1 aColes, N.A.1 aChaplot, V.1 aMoore, Nathan1 aWu, Jiaping uhttps://icer.msu.edu/research/publications/evaluating-dem-source-resolution-uncertainties-soil-water-assessment-tool00579nas a2200145 4500008004100000245010200041210006900143490000700212100001800219700001600237700001800253700001900271700002000290856012300310 2012 eng d00aEvaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa0 aEvaluation of estimating daily maximum and minimum air temperatu0 v141 aLin, Shengpan1 aWu, Jiaping1 aMoore, Nathan1 aDeVisser, Mark1 aMessina, Joseph uhttps://icer.msu.edu/research/publications/evaluation-estimating-daily-maximum-minimum-air-temperature-modis-data-east01554nas a2200529 4500008004100000245007700041210006900118260001200187490000800199100001500207700001800222700001600240700002000256700001600276700002200292700001500314700002000329700001900349700001300368700002700381700002300408700001800431700002200449700001800471700002200489700002100511700002100532700002300553700002500576700002000601700001900621700002000640700002200660700002000682700002300702700001600725700001700741700002000758700002400778700001900802700001800821700001500839700001800854700002000872700002300892856010900915 2012 eng d00aA magnified young galaxy from about 500 million years after the Big Bang0 amagnified young galaxy from about 500 million years after the Bi c09/20120 v4891 aZheng, Wei1 aPostman, Marc1 aZitrin, Adi1 aMoustakas, John1 aShu, Xinwen1 aJouvel, Stephanie1 aHøst, Ole1 aMolino, Alberto1 aBradley, Larry1 aCoe, Dan1 aMoustakas, Leonidas, A1 aCarrasco, Mauricio1 aFord, Holland1 aBenítez, Narciso1 aLauer, Tod, R1 aSeitz, Stella;, B1 aBouwens, Rychard1 aKoekemoer, Anton1 aMedezinski, Elinor1 aBartelmann, Matthias1 aBroadhurst, Tom1 aDonahue, Megan1 aGrillo, Claudio1 aInfante, Leopoldo1 aJha, Saurabh, W1 aKelson, Daniel, D.1 aLahav, Ofer1 aLemze, Doron1 aMelchior, Peter1 aMeneghetti, Massimo1 aMerten, Julian1 aNonino, Mario1 aOgaz, Sara1 aRosati, Piero1 aUmetsu, Keiichi1 avan der Wel, Arjen uhttps://icer.msu.edu/research/publications/magnified-young-galaxy-about-500-million-years-after-big-bang01334nas a2200493 4500008004100000245015700041210006900198260001200267490000800279100001600287700001300303700002200316700001300338700001400351700001400365700001400379700001300393700001500406700001200421700001800433700001500451700001400466700001500480700001300495700001500508700001400523700001300537700001300550700001400563700001200577700001400589700001400603700001500617700001500632700001100647700001800658700001800676700001500694700001500709700001500724700001400739700001500753856007200768 2012 eng d00aMass Measurements of the Neutron-Deficient 41Ti, 45Cr, 49Fe, and 53Ni Nuclides: ￼First Test of the Isobaric Multiplet Mass Equation in fp-Shell Nuclei0 aMass Measurements of the NeutronDeficient 41Ti 45Cr 49Fe and 53N c09/20120 v1091 aZhang, Y.H.1 aXu, H.S.1 aLitvinov, Yu., A.1 aTu, X.L.1 aYan, X.L.1 aTypel, S.1 aBlaum, K.1 aWang, M.1 aZhou, X.H.1 aSun, Y.1 aBrown, B., A.1 aYuan, Y.J.1 aXia, J.W.1 aYang, J.C.1 aAudi, G.1 aChen, X.C.1 aJia, G.B.1 aHu, Z.G.1 aMa, X.W.1 aMao, R.S.1 aMei, B.1 aShuai, P.1 aSun, Z.Y.1 aWang, S.T.1 aXiao, G.Q.1 aXu, X.1 aYamaguchi, T.1 aYamaguchi, Y.1 aZang, Y.D.1 aZhao, H.W.1 aZhao, T.C.1 aZhang, W.1 aZhan, W.L. uhttp://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.10250100607nas a2200169 4500008004100000245011700041210007300158260001900231490000700250100001200257700002100269700002000290700001800310700002100328700001700349856007100366 2012 eng d00aPhysics of bandgap formation in Cu–Sb–Se based novel thermoelectrics: the role of Sb valency and Cu d levels0 aPhysics of bandgap formation in Cu–Sb–Se based novel thermoelect cSeptember 20120 v241 aDo, Dat1 aOzolins, Vidvuds1 aMahanti, S., D.1 aLee, Mal-Soon1 aZhang, Yongsheng1 aWolverton, C uhttp://iopscience.iop.org.proxy1.cl.msu.edu/0953-8984/24/41/41550200670nas a2200169 4500008004100000245011800041210006900159100002100228700002200249700001700271700001400288700001700302700001600319700002200335700001800357856012500375 2011 eng d00aThe Comprehensive Phytopathogen Genomics Resource: An electronic resource for data-mining plant pathogen genomes0 aComprehensive Phytopathogen Genomics Resource An electronic reso1 aHamilton, J., P.1 aNeeno-Eckwall, E.1 aAdhikari, B.1 aPerna, N.1 aTisserat, N.1 aLeach, J.E.1 aLévesque, C., A.1 aBuell, C., R. uhttps://icer.msu.edu/research/publications/comprehensive-phytopathogen-genomics-resource-electronic-resource-data-mining00693nas a2200181 4500008004100000245011800041210006900159490000800228100001800236700002300254700002200277700001900299700001900318700002000337700001600357700001500373856012300388 2011 eng d00aEast African Food Security as Influenced by Future Climate Change and Land Use Change at Local to Regional Scales0 aEast African Food Security as Influenced by Future Climate Chang0 v1071 aMoore, Nathan1 aAlagarswamy, Gopal1 aPijanowski, Bryan1 aThornton, Phil1 aLofgren, Brent1 aOlson, Jennifer1 aYanda, Pius1 aQi, Jiaguo uhttps://icer.msu.edu/research/publications/east-african-food-security-influenced-future-climate-change-land-use-change00518nas a2200109 4500008004100000245012900041210006900170490000800239100001700247700002000264856012400284 2011 eng d00aMolecular Dynamics Study of Thermal Transport in GaAs-SAM-GaAs Junctions with Ab-initio Characterization of Thiol-GaAs Bonds0 aMolecular Dynamics Study of Thermal Transport in GaAsSAMGaAs Jun0 v1091 aLuo, Tengfei1 aLloyd, John, R. uhttps://icer.msu.edu/research/publications/molecular-dynamics-study-thermal-transport-gaas-sam-gaas-junctions-ab-initio00538nas a2200109 4500008004100000245014900041210006900190490000800259100001700267700002000284856012400304 2011 eng d00aMolecular dynamics study of thermal transport in GaAs-self-assembly monolayer-GaAs junctions with ab initio characterization of thiol-GaAs bonds0 aMolecular dynamics study of thermal transport in GaAsselfassembl0 v1091 aLuo, Tengfei1 aLloyd, John, R. uhttps://icer.msu.edu/research/publications/molecular-dynamics-study-thermal-transport-gaas-self-assembly-monolayer-gaas00613nas a2200169 4500008004100000245008300041210006900124300001400193490000800207100001800215700002000233700001900253700001700272700001800289700001700307856011900324 2011 eng d00aSecond-order selection for evolvability in a large Escherichia coli population0 aSecondorder selection for evolvability in a large Escherichia co a1433-14360 v3311 aWoods, R., J.1 aBarrick, J., E.1 aCooper, T., F.1 aShrestha, U.1 aKauth, M., R.1 aLenski, R.E. uhttps://icer.msu.edu/research/publications/second-order-selection-evolvability-large-escherichia-coli-population-000580nas a2200157 4500008004100000245008300041210006900124490000800193100001800201700001500219700001900234700001700253700001800270700001700288856011700305 2011 eng d00aSecond-order selection for evolvability in a large Escherichia coli population0 aSecondorder selection for evolvability in a large Escherichia co0 v3311 aWoods, R., J.1 aBarrick, E1 aCooper, T., F.1 aShrestha, U.1 aKauth, M., R.1 aLenski, R.E. uhttps://icer.msu.edu/research/publications/second-order-selection-evolvability-large-escherichia-coli-population00656nas a2200181 4500008004100000245008800041210006900129490000700198100001800205700002000223700002200243700002000265700001500285700001800300700002200318700002000340856011400360 2010 eng d00aAdapting MODIS-derived LAI and fractional cover into the RAMS model for East Africa0 aAdapting MODISderived LAI and fractional cover into the RAMS mod0 v301 aMoore, Nathan1 aTorbick, Nathan1 aPijanowski, Bryan1 aLofrgren, Brent1 aWang, Jing1 aKim, Dong-Yun1 aAndresen, Jeffrey1 aOlson, Jennifer uhttps://icer.msu.edu/research/publications/adapting-modis-derived-lai-fractional-cover-rams-model-east-africa00375nas a2200121 4500008004100000245004100041210004100082300001100123490000700134100001900141700001200160856008100172 2010 eng d00aDifferent Truths in Different Worlds0 aDifferent Truths in Different Worlds a97-1140 v211 aMiller, K., D.1 aLin, S. uhttps://icer.msu.edu/research/publications/different-truths-different-worlds00498nas a2200109 4500008004100000245010800041210006900149490000800218100001700226700002000243856012500263 2010 eng d00aEquilibrium Molecular Dynamics Study of Lattice Thermal Conductivity/Conductance of Au-SAM-Au Junctions0 aEquilibrium Molecular Dynamics Study of Lattice Thermal Conducti0 v1321 aLuo, Tengfei1 aLloyd, John, R. uhttps://icer.msu.edu/research/publications/equilibrium-molecular-dynamics-study-lattice-thermal-conductivity-conductance00577nas a2200145 4500008004100000245010100041210006900142300001400211490000700225100002000232700001800252700002200270700001700292856012200309 2010 eng d00aEscherichia coli rpoB mutants have increased evolvability in proportion to their fitness defects0 aEscherichia coli rpoB mutants have increased evolvability in pro a1338-13470 v271 aBarrick, J., E.1 aKauth, M., R.1 aStrelioff, C., C.1 aLenski, R.E. uhttps://icer.msu.edu/research/publications/escherichia-coli-rpob-mutants-have-increased-evolvability-proportion-their00492nas a2200109 4500008004100000245009800041210006900139490002000208100001100228700001700239856012600256 2010 eng d00aA High-Order Finite-Difference Method for Numerical Simulations of Supersonic Turbulent Flows0 aHighOrder FiniteDifference Method for Numerical Simulations of S0 vTo be published1 aLi, Z.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/high-order-finite-difference-method-numerical-simulations-supersonic-turbulent01381nas a2200133 4500008004100000245006700041210006600108260003100174520088700205100001101092700001701103700002001120856010701140 2010 eng d00aLarge-Scale Simulations of Supersonic Turbulent Reacting Flows0 aLargeScale Simulations of Supersonic Turbulent Reacting Flows aOrlando, FLbAIAAc01/20103 aThe scalar filtered mass density function (FMDF) is further developed and employed for large-eddy simulations (LES) of high speed turbulent flows in complex geometries. LES/FMDF is implemented via an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. Turbulent mixing and combustion are modeled with the FMDF. The LES/FMDF method is used for simulations of isotropic turbulent flow in a piston-cylinder assembly, the flow in a shock tube and a supersonic co-axial helium-air jet. The critical role of pressure in the FMDF equation when applied to compressible flows is studied. It is shown that LES/FMDF is reliable and is able to simulate compressible turbulent mixing and combustion in supersonic flows.

1 aLi, Z.1 aJaberi, F.A.1 aBanaeizadeh, A. uhttps://icer.msu.edu/research/publications/large-scale-simulations-supersonic-turbulent-reacting-flows01728nas a2200145 4500008004100000245014900041210006900190260001200259300001400271490000800285520113400293100001201427700001901439856012401458 2010 eng d00aMulti-level Extension of the Cluster-In-Molecule Local Correlation Methodology: Merging Coupled-Cluster and Moller-Plesset Perturbation Theories0 aMultilevel Extension of the ClusterInMolecule Local Correlation c05/2010 a6721-67270 v1143 aA multilevel extension of the local correlation “cluster-in-molecule” (CIM) framework, which enables one to combine different quantum chemistry methods to treat different regions in a large molecular system without splitting it into ad hoc fragments and saturating dangling bonds, is proposed. The resulting schemes combine higher-level methods, such as the completely renormalized coupled-cluster (CC) approach with singles, doubles, and noniterative triples, termed CR-CC(2,3), to treat the reactive part of a large molecular system, and lower-order methods, such as the second-order Møller−Plesset perturbation theory (MP2), to handle the chemically inactive regions. The multilevel CIM-CC/MP2 approaches preserve the key features of all CIM methods, such as the use of orthonormal localized orbitals and coarse-grain parallelism, while substantially reducing the already relatively low costs of the single-level CIM-CC calculations. Illustrative calculations include bond breaking in dodecane and the reactions of the bis(2,4,4-trimethylpentyl)dithiophosphinic acid with one and two water molecules.

1 aLi, Wei1 aPiecuch, Piotr uhttps://icer.msu.edu/research/publications/multi-level-extension-cluster-molecule-local-correlation-methodology-merging00483nas a2200109 4500008004100000245009600041210006900137490000700206100001700213700002000230856012300250 2010 eng d00aNon-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au-SAM-Au Junctions0 aNonEquilibrium Molecular Dynamics Study of Thermal Energy Transp0 v531 aLuo, Tengfei1 aLloyd, John, R. uhttps://icer.msu.edu/research/publications/non-equilibrium-molecular-dynamics-study-thermal-energy-transport-au-sam-au01480nas a2200121 4500008004100000245008700041210006900128260003100197520098000228100001101208700001701219856012201236 2010 eng d00aNumerical Investigations of Shock-Turbulence Interactions in a Planar Mixing Layer0 aNumerical Investigations of ShockTurbulence Interactions in a Pl aOrlando, FLbAIAAc01/20103 aDirect numerical simulation (DNS) and large-eddy simulation (LES) of spatially developing supersonic mixing layer, interacting with an oblique shock wave are conducted with a new high-order Monotonicity-Preserving scheme. Without the incident shock, the mixing layer grows linearly and exhibits self-similar behavior after the transition. With the shock, significant small-scale turbulence is generated just behind the shock. With an increase in shock angle, the intensity of the shock-generated turbulence is increased and its peak position shifts away from the mixing layer centerline. The effects of turbulence on the shock are also shown to be very significant, such that normal shocklets and large adverse pressure gradients are created in some conditions. Comparison with the DNS data indicates that the LES with the modified kinetic energy viscosity (MKEV) subgrid stress model is able to predict the main features of the flow and shock-turbulence interactions.

1 aLi, Z.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/numerical-investigations-shock-turbulence-interactions-planar-mixing-layer00625nas a2200157 4500008004100000245014200041210006900183260002300252300000800275490000600283100001700289700001200306700001800318700001100336856012000347 2010 eng d00aThermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects0 aThermodynamic modeling of transcription sensitivity analysis dif bBioMed Central Ltd a1420 v41 aDresch, J.M.1 aLiu, X.1 aArnosti, D.N.1 aAy, A. uhttps://icer.msu.edu/research/publications/thermodynamic-modeling-transcription-sensitivity-analysis-differentiates01289nas a2200205 4500008004100000245006500041210006500106260001200171300001100183490000800194520066500202100001800867700001900885700002000904700001600924700001100940700001800951700002000969856009400989 2009 eng d00aConstraints on the Density Dependence of the Symmetry Energy0 aConstraints on the Density Dependence of the Symmetry Energy c03/2009 a1227010 v1023 aCollisions involving {112Sn} and {124Sn} nuclei have been simulated with the improved quantum molecular dynamics transport model. The results of the calculations reproduce isospin diffusion data from two different observables and the ratios of neutron and proton spectra. By comparing these data to calculations performed over a range of symmetry energies at saturation density and different representations of the density dependence of the symmetry energy, constraints on the density dependence of the symmetry energy at subnormal density are obtained. The results from the present work are compared to constraints put forward in other recent analyses.

1 aTsang, M., B.1 aZhang, Yingxun1 aDanielewicz, P.1 aFamiano, M.1 aLi, Z.1 aLynch, W., G.1 aSteiner, A., W. uhttps://icer.msu.edu/research/publications/constraints-density-dependence-symmetry-energy01565nas a2200121 4500008004100000245005800041210005700099260007700156520108400233100001101317700001701328856009801345 2009 eng d00aLarge-Scale Simulations of High Speed Turbulent Flows0 aLargeScale Simulations of High Speed Turbulent Flows aOrlando, FLbAmerican Institute of Aeronautics and Astronauticsc01/20093 aThis paper briefly describes a new class of high-order Monotonicity-Preserving (MP) finite difference methods recently developed for direct numerical simulation (DNS) and large-eddy simulation (LES) of high-speed turbulent flows. The MP method has been implemented together with high-order compact (COMP) and weighted essentially non- oscillatory (WENO) methods in a generalized three-dimensional (3D) code and has been applied to various 1D, 2D and 3D problems. For the LES, compressible versions of the gradient-based subgrid-scale closures are employed. Detailed and extensive analysis of various flows indicates that MP schemes have less numerical dissipation and faster grid convergence than WENO schemes. Simulations conducted with high-order MP schemes preserve sharp changes in flow variables without spurious oscillations and capture the turbulence at the smallest simulated scales. The non-conservative form of the scalar equation solved with MP schemes are shown to generate the same results as COMP schemes for supersonic mixing problems involving shock waves.

1 aLi, Z.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/large-scale-simulations-high-speed-turbulent-flows01687nas a2200157 4500008004100000245009400041210006900135260001200204490000800216520112100224100001201345700001901357700001601376700001501392856012201407 2009 eng d00aLocal Correlation Calculations Using Standard and Renormalized Coupled-Cluster Approaches0 aLocal Correlation Calculations Using Standard and Renormalized C c09/20090 v1313 ahe linear scaling local correlation approach, termed “cluster-in-molecule” (CIM), is extended to the coupled-cluster (CC) theory with singles and doubles (CCSD) and CC methods with singles, doubles, and noniterative triples, including CCSD(T) and the completely renormalized CR-CC(2,3) approach. The resulting CIM-CCSD, CIM-CCSD(T), and CIM-CR-CC(2,3) methods are characterized by (i) the linear scaling of the CPU time with the system size, (ii) the use of orthonormal orbitals in the CC subsystem calculations, (iii) the natural parallelism, (iv) the high computational efficiency, enabling calculations for much larger systems and at higher levels of CC theory than previously possible, and (v) the purely noniterative character of local triples corrections. By comparing the results of the canonical and CIM-CC calculations for normal alkanes and water clusters, it is shown that the CIM-CCSD, CIM-CCSD(T), and CIM-CR-CC(2,3) approaches accurately reproduce the corresponding canonical CC correlation and relative energies, while offering savings in the computer effort by orders of magnitude.

1 aLi, Wei1 aPiecuch, Piotr1 aGour, J., R1 aLi, Shuhua uhttps://icer.msu.edu/research/publications/local-correlation-calculations-using-standard-renormalized-coupled-cluster00490nas a2200109 4500008004100000245007600041210006900117260005600186100001100242700001700253856011000270 2009 eng d00aA New Model for Numerical Simulations of Two-Phase Turbulent Combustion0 aNew Model for Numerical Simulations of TwoPhase Turbulent Combus aAnn Arbor, MIbNational Combustion Meetingc05/20091 aLi, Z.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/new-model-numerical-simulations-two-phase-turbulent-combustion00397nas a2200133 4500008004100000245003800041210003800079300001200117490000700129100001900136700001900155700001200174856007700186 2009 eng d00aStrategies for Online Communities0 aStrategies for Online Communities a808-8220 v511 aMiller, K., D.1 aFabian, F., H.1 aLin, S. uhttps://icer.msu.edu/research/publications/strategies-online-communities01591nas a2200217 4500008004100000245007600041210006900117260001200186300001100198490000800209520092200217100001801139700001501157700001501172700001601187700001401203700001201217700001801229700001501247856011101262 2009 eng d00aSurvey of Excited State Neutron Spectroscopic Factors for Z=8-28 Nuclei0 aSurvey of Excited State Neutron Spectroscopic Factors for Z828 N c01/2009 a0625010 v1023 aWe have extracted 565 neutron spectroscopic factors of sd and fp shell nuclei by systematically analyzing more than 2000 measured (d, p) angular distributions. We are able to compare 125 of the extracted spectroscopic factors to values predicted by large-basis shell-model calculations and evaluate the accuracies of spectroscopic factors predicted by different shell-model interactions in these regions. We find that the spectroscopic factors predicted for most excited states of sd-shell nuclei using the latest {USDA} or {USDB} interactions agree with the experimental values. For fp shell nuclei, the inability of the current models to account for the core excitation and fragmentation of the states leads to considerable discrepancies. In particular, the agreement between data and shell-model predictions for Ni isotopes is not better than a factor of 2 using either the {GXPF1A} or the {XT} interaction.

1 aTsang, M., B.1 aLee, Jenny1 aSu, S., C.1 aDai, J., Y.1 aHoroi, M.1 aLiu, H.1 aLynch, W., G.1 aWarren, S. uhttps://icer.msu.edu/research/publications/survey-excited-state-neutron-spectroscopic-factors-z8-28-nuclei01702nas a2200133 4500008004100000245007000041210006800111260001200179490000700191520123400198100001101432700001701443856010801460 2009 eng d00aTurbulence-Interface Interactions in a Two-Fluid Homogeneous Flow0 aTurbulenceInterface Interactions in a TwoFluid Homogeneous Flow c09/20090 v213 aThe two-way interactions between the turbulent velocity field and the interface in an incompressible two-fluid homogeneous turbulent flow are studied with a recently developed Lagrangian–Eulerian interfacial particle level-set method. The numerical results confirm that the rate of change of the interface area is directly related to the work done by the surface tension force. While the surface tension damps the surrounding turbulence in the “interface stretching period” to oppose the increase in interface area, it is shown to actually increase the turbulent kinetic energy when the interface experiences compression. Additionally, the surface tension force is found to generate strong vortical motions close to the interface through the baroclinic torque effects. There is also an increase in strain rate and the viscous dissipation rate of turbulent kinetic energy in the interface region. The effect of interface on the surrounding turbulence appears primarily in the direction perpendicular to the interface. Analysis of the vorticity and kinetic energy equations indicates that the turbulence-interface interactions are strongly dependent on the fluids’ density ratio and the Weber number.

1 aLi, Z.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/turbulence-interface-interactions-two-fluid-homogeneous-flow00459nas a2200109 4500008004100000245007700041210006900118490000800187100001700195700002000212856011700232 2008 eng d00aAb-initio Molecular Dynamics Study of Nanoscale Thermal Energy Transport0 aAbinitio Molecular Dynamics Study of Nanoscale Thermal Energy Tr0 v1301 aLuo, Tengfei1 aLloyd, John, R. uhttps://icer.msu.edu/research/publications/ab-initio-molecular-dynamics-study-nanoscale-thermal-energy-transport02100nas a2200181 4500008004100000245008800041210006900129300001000198490000800208520148500216100001401701700001601715700001501731700001401746700001901760700001801779856012101797 2008 eng d00aApplication of Renormalized Coupled- Cluster Methods to Potential Function of Water0 aApplication of Renormalized Coupled Cluster Methods to Potential a59-780 v1203 aThe goal of this paper is to examine the performance of the conventional and renormalized single-reference coupled-cluster (CC) methods in calculations of the potential energy surface of the water molecule. A comparison with the results of the internally contracted multi-reference configuration interaction calculations including the quasi-degenerate Davidson correction (MRCI(Q)) and the spectroscopically accurate potential energy surface of water resulting from the use of the energy switching (ES) approach indicates that the relatively inexpensive completely renormalized (CR) CC methods with singles (S), doubles (D), and a non-iterative treatment of triples (T) or triples and quadruples (TQ), such as CR-CCSD(T), CR-CCSD(TQ), and the recently developed rigorously size extensive extension of CR-CCSD(T), termed CR-CC(2,3), provide substantial improvements in the results of conventional CCSD(T) and CCSD(TQ) calculations at larger internuclear separations. It is shown that the CR-CC(2,3) results corrected for the effect of quadruply excited clusters through the CR-CC(2,3)+Q approach can compete with the highly accurate MRCI(Q) data. The excellent agreement between the CR-CC(2,3)+Q and MRCI(Q) results suggests ways of improving the global potential energy surface of water resulting from the use of the ES approach in the regions of intermediate bond stretches and intermediate energies connecting the region of the global minimum with the asymptotic regions.

1 aZheng, J.1 aGour, J., R1 aLutz, J.J.1 aWloch, M.1 aPiecuch, Piotr1 aTruhlar, D.G. uhttps://icer.msu.edu/research/publications/application-renormalized-coupled-cluster-methods-potential-function-water00777nas a2200229 4500008004100000245009000041210006900131260000800200300001200208490000800220653002200228653002800250653003000278653002100308100001100329700001900340700002000359700001900379700001100398700001500409856012300424 2008 eng d00aThe Biermann Battery in Cosmological MHD Simulations of Population III Star Formation0 aBiermann Battery in Cosmological MHD Simulations of Population I cdec aL57-L600 v68810acosmology: theory10aGalaxies: High-Redshift10aMagnetohydrodynamics: MHD10astars: formation1 aXu, H.1 aO'Shea, B., W.1 aCollins, D., C.1 aNorman, M., L.1 aLi, H.1 aLi, Shuhua uhttps://icer.msu.edu/research/publications/biermann-battery-cosmological-mhd-simulations-population-iii-star-formation02156nas a2200181 4500008004100000245022700041210006900268260001200337490000800349520139600357100001401753700001601767700001501783700001401798700001901812700001801831856012501849 2008 eng d00aA Comparative Assessment of the Perturbative and Renormalized Coupled Cluster Theories with a Non-iterative Treatment of Triple Excitations for Thermochemical Kinetics, Including a Study of Basis Set and Core Correlation E0 aComparative Assessment of the Perturbative and Renormalized Coup c01/20080 v1283 aThe CCSD, CCSD(T), and CR-CC(2,3) coupled cluster methods, combined with five triple-zeta basis sets, namely, MG3S, aug-cc-pVTZ, aug-cc-pV(T+d)Z, aug-cc-pCVTZ, and aug-cc-pCV(T+d)Z, are tested against the DBH24 database of diverse reaction barrier heights. The calculations confirm that the inclusion of connected triple excitations is essential to achieving high accuracy for thermochemical kinetics. They show that various noniterative ways of incorporating connected triple excitations in coupled cluster theory, including the CCSD(T) approach, the full CR-CC(2,3) method, and approximate variants of CR-CC(2,3) similar to the triples corrections of the CCSD(2) approaches, are all about equally accurate for describing the effects of connected triply excited clusters in studies of activation barriers. The effect of freezing core electrons on the results of the CCSD, CCSD(T), and CR-CC(2,3) calculations for barrier heights is also examined. It is demonstrated that to include core correlation most reliably, a basis set including functions that correlate the core and that can treat core-valence correlation is required. On the other hand, the frozen-core approximation using valence-optimized basis sets that lead to relatively small computational costs of CCSD(T) and CR-CC(2,3) calculations can achieve almost as high accuracy as the analogous fully correlated calculations.

1 aZheng, J.1 aGour, J., R1 aLutz, J.J.1 aWloch, M.1 aPiecuch, Piotr1 aTruhlar, D.G. uhttps://icer.msu.edu/research/publications/comparative-assessment-perturbative-renormalized-coupled-cluster-theories-non01908nas a2200133 4500008004100000245008100041210006900122260003200191520138900223100001101612700001701623700001701640856011701657 2008 eng d00aFiltered Mass Density Function for Numerical Simulations of Spray Combustion0 aFiltered Mass Density Function for Numerical Simulations of Spra aReno, NevadabAIAAc01/20083 aThis paper briefly describes our recent efforts on the modeling and numerical simulations of two-phase turbulent reacting flows in realistic combustion systems with a new large-eddy simulation (LES) model. The model is constructed based on the two-phase extension of scalar filtered mass density function (FMDF) and a Lagrangian-Eulerian- Lagrangian mathematical/numerical methodology. In this methodology, the “resolved” fluid velocity field is obtained by solving the filtered form of the compressible Navier-Stokes equations with a high-order finite difference scheme. The liquid (droplet) phase and scalar (temperature and species mass fractions) fields are both obtained by stochastic Lagrangian models. There are two-way interactions between the phases and all the Eulerian and Lagrangian fields. The LES/FMDF is used for systematic analysis of turbulent combustion in the spray-controlled dump combustor and double-swirl spray burner for various flow and spray parameters. The effects of fuel type, spray angle, mass loading ratio, droplet size distribution, fuel/air composition, wall, and inflow/outflow conditions on the combustion are investigated. It has been found that the main features of the turbulence and combustion are modified by changing the inflow/outflow conditions. The LES/FMDF results also confirm the significance of the spray parameters.

1 aLi, Z.1 aJaberi, F.A.1 aYaldizli, M. uhttps://icer.msu.edu/research/publications/filtered-mass-density-function-numerical-simulations-spray-combustion02418nas a2200169 4500008004100000245011500041210006900156260001100225300001400236490000700250520174400257653007702001100001102078700001702089700001902106856012302125 2008 eng d00aA Hybrid Langrangian-Eulerian Particle-Level Set Method for numerical Simulations of Two-Fluid Turbulent Flows0 aHybrid LangrangianEulerian ParticleLevel Set Method for numerica c4/2008 a2271-23000 v563 aA coupled Lagrangian interface-tracking and Eulerian level set (LS) method is developed and implemented for numerical simulations of two-fluid flows. In this method, the interface is identified based on the locations of notional particles and the geometrical information concerning the interface and fluid properties, such as density and viscosity, are obtained from the LS function. The LS function maintains a signed distance function without an auxiliary equation via the particle-based Lagrangian re-initialization technique. To assess the new hybrid method, numerical simulations of several ‘standard interface-moving’ problems and two-fluid laminar and turbulent flows are conducted. The numerical results are evaluated by monitoring the mass conservation, the turbulence energy spectral density function and the consistency between Eulerian and Lagrangian components. The results of our analysis indicate that the hybrid particle-level set method can handle interfaces with complex shape change, and can accurately predict the interface values without any significant (unphysical) mass loss or gain, even in a turbulent flow. The results obtained for isotropic turbulence by the new particle-level set method are validated by comparison with those obtained by the ‘zero Mach number’, variable-density method. For the cases with small thermal/mass diffusivity, both methods are found to generate similar results. Analysis of the vorticity and energy equations indicates that the destabilization effect of turbulence and the stability effect of surface tension on the interface motion are strongly dependent on the density and viscosity ratios of the fluids. Copyright q 2007 John Wiley & Sons, Ltd.

10atwo-fluid turbulent flows; particle-level set method; interface tracking1 aLi, Z.1 aJaberi, F.A.1 aShih, T., I-P. uhttps://icer.msu.edu/research/publications/hybrid-langrangian-eulerian-particle-level-set-method-numerical-simulations01478nas a2200193 4500008004100000245010300041210006900144260001200213300001400225490000800239520081400247100001901061700002001080700001601100700001101116700001801127700001801145856012101163 2008 eng d00aThe influence of cluster emission and the symmetry energy on neutron-proton spectral double ratios0 ainfluence of cluster emission and the symmetry energy on neutron c02/2008 a145–1480 v6643 aThe emissions of neutrons, protons and bound clusters from central {124Sn} + {124Sn} and {112Sn} + {112Sn} collisions are simulated using the Improved Quantum Molecular Dynamics model for two different density-dependent symmetry-energy functions. The calculated neutron-proton spectral double ratios for these two systems are sensitive to the density dependence of the symmetry energy, consistent with previous work. Cluster emission increases the double ratios in the low energy region relative to values calculated in a coalescence-invariant approach. To circumvent uncertainties in cluster production and secondary decays, it is important to have more accurate measurements of the neutron-proton ratios at higher energies in the center of mass system, where the influence of such effects is reduced.

1 aZhang, Yingxun1 aDanielewicz, P.1 aFamiano, M.1 aLi, Z.1 aLynch, W., G.1 aTsang, M., B. uhttps://icer.msu.edu/research/publications/influence-cluster-emission-symmetry-energy-neutron-proton-spectral-double00522nas a2200121 4500008004100000050001900041245006500060210006400125260007800189100001700267700001100284856010500295 2008 eng d aAIAA 2008-115400aLarge Eddy Simulations of Two-Phase Turbulent Reacting Flows0 aLarge Eddy Simulations of TwoPhase Turbulent Reacting Flows aReno, NevadabAMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICSc01/20081 aJaberi, F.A.1 aLi, Z. uhttps://icer.msu.edu/research/publications/large-eddy-simulations-two-phase-turbulent-reacting-flows00667nas a2200181 4500008004100000245010900041210006900150260003000219300001300249490000600262100001400268700001600282700001400298700001700312700001600329700001700345856012300362 2008 eng d00aNatural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes0 aNatural selection fails to optimize mutation rates for longterm bPublic Library of Science ae10001870 v41 aClune, J.1 aMisevic, D.1 aOfria, C.1 aLenski, R.E.1 aElena, S.F.1 aSanjuán, R. uhttps://icer.msu.edu/research/publications/natural-selection-fails-optimize-mutation-rates-long-term-adaptation-rugged01816nas a2200217 4500008004100000245009100041210006900132260001200201490000700213520109300220653002301313653001901336100001401355700001801369700001601387700001201403700002001415700001801435700001901453856012601472 2008 eng d00aTransport Model Simulations of Projectile Fragmentation Reactions at 140 {MeV/nucleon}0 aTransport Model Simulations of Projectile Fragmentation Reaction c08/20080 v783 aThe collisions in four different reaction systems using {\$ˆ{40,48}\$Ca} and {\$ˆ{58,64}\$Ni} isotope beams and a Be target have been simulated using the Heavy Ion Phase Space Exploration and the Antisymmetrized Molecular Dynamics models. The present study mainly focuses on the model predictions for the excitation energies of the hot fragments and the cross sections of the final fragments produced in these reactions. The effects of various factors influencing the final fragment cross sections, such as the choice of the statistical decay code and its parameters have been explored. The predicted fragment cross sections are compared to the projectile fragmentation cross sections measured with the A1900 mass separator. At {\$E/A=140\$} {MeV,} reaction dynamics can significantly modify the detection efficiencies for the fragments and make them different from the efficiencies applied to the measured data reported in the previous work. The effects of efficiency corrections on the validation of event generator codes are discussed in the context of the two models.

10aNuclear Experiment10aNuclear Theory1 aMocko, M.1 aTsang, M., B.1 aLacroix, D.1 aOno, A.1 aDanielewicz, P.1 aLynch, W., G.1 aCharity, R., J uhttps://icer.msu.edu/research/publications/transport-model-simulations-projectile-fragmentation-reactions-140-mev-nucleon01210nas a2200193 4500008004100000245008000041210006900121260001200190300001200202490000700214520059600221100001400817700001600831700001400847700002100861700001800882700001900900856009700919 2007 eng d00aCoupled-Cluster and Configuration-Interaction Calculations for Heavy Nuclei0 aCoupledCluster and ConfigurationInteraction Calculations for Hea c03/2007 a4 pages0 v983 aWe compare coupled-cluster (CC) and configuration-interaction (CI) results for 56Ni obtained in the pf-shell basis, focusing on practical CC approximations that can be applied to systems with dozens or hundreds of correlated fermions. The weight of the reference state and the strength of correlation effects are controlled by the gap between the f7/2 orbit and the f5/2, p3/2, p1/2 orbits. Independent of the gap, the CC method with 1p-1h and 2p-2h clusters and a noniterative treatment of 3p-3h clusters is as accurate as the more demanding CI approach truncated at the 4p-4h level.

1 aHoroi, M.1 aGour, J., R1 aWloch, M.1 aLodriguito, M.D.1 aBrown, B., A.1 aPiecuch, Piotr uhttps://icer.msu.edu/coupled-cluster-and-configuration-interaction-calculations-heavy-nuclei01888nas a2200133 4500008004100000245008100041210006900122260003200191520138900223100001701612700001101629700001701640856009701657 2007 eng d00aFiltered Mass Density Function for Numerical Simulations of Spray Combustion0 aFiltered Mass Density Function for Numerical Simulations of Spra aReno, NevadabAIAAc01/20083 aThis paper briefly describes our recent efforts on the modeling and numerical simulations of two-phase turbulent reacting flows in realistic combustion systems with a new large-eddy simulation (LES) model. The model is constructed based on the two-phase extension of scalar filtered mass density function (FMDF) and a Lagrangian-Eulerian- Lagrangian mathematical/numerical methodology. In this methodology, the “resolved” fluid velocity field is obtained by solving the filtered form of the compressible Navier-Stokes equations with a high-order finite difference scheme. The liquid (droplet) phase and scalar (temperature and species mass fractions) fields are both obtained by stochastic Lagrangian models. There are two-way interactions between the phases and all the Eulerian and Lagrangian fields. The LES/FMDF is used for systematic analysis of turbulent combustion in the spray-controlled dump combustor and double-swirl spray burner for various flow and spray parameters. The effects of fuel type, spray angle, mass loading ratio, droplet size distribution, fuel/air composition, wall, and inflow/outflow conditions on the combustion are investigated. It has been found that the main features of the turbulence and combustion are modified by changing the inflow/outflow conditions. The LES/FMDF results also confirm the significance of the spray parameters.

1 aYaldizli, M.1 aLi, Z.1 aJaberi, F.A. uhttps://icer.msu.edu/filtered-mass-density-function-numerical-simulations-spray-combustion-001300nas a2200133 4500008004100000245007900041210006900120260005000189520079100239100001701030700001101047700001701058856009101075 2007 eng d00aA New Model for Large Eddy Simulations of Multi-Phase Turbulent Combustion0 aNew Model for Large Eddy Simulations of MultiPhase Turbulent Com aCincinnati, OhiobAIAA/ASME/SAI/ASEEc07/20073 aNumerical simulations of a spray-controlled lean premixed dump combustor are con- ducted via a two-phase large eddy simulation (LES) methodology. In this methodology, the velocity field is obtained by a high-order finite difference method. The subgrid gas- liquid combustion closure is based on the two-phase filtered mass density function (FMDF) method and the spray is modeled with a Lagrangian scheme. The effects of spray, fuel/air composition, and inflow/outflow conditions on the combustion are investigated. It has been found that the main features of the turbulence and combustion inside the dump combustor are very differently modified by the spray for different spray parameters. The LES/FMDF results also indicate the significance of the inflow and outflow conditions.

1 aYaldizli, M.1 aLi, Z.1 aJaberi, J.A. uhttps://icer.msu.edu/new-model-large-eddy-simulations-multi-phase-turbulent-combustion01659nas a2200145 4500008004100000020001800041245007700059210006900136260003700205520113400242100001101376700001701387700001701404856009201421 2007 eng d a0-7918-4803-500aNumerical Simulations of Two-Phase Turbulent Combustion in Spray Burners0 aNumerical Simulations of TwoPhase Turbulent Combustion in Spray aLas Vegas, NevadabASMEc09/20073 aThe complex interactions among turbulence, combustion and spray in liquid-fuel burners are modeled and simulated via a new two-phase Lagrangian-Eulerian-Lagrangian large eddy simulation (LES) methodology. In this methodology, the spray is modeled with a Lagrangian mathematical/computational method which allows two-way mass, momentum and energy coupling between phases. The subgrid gas-liquid combustion is based on the two-phase filtered mass density function (FMDF) that has several advantages over “conventional” two-phase combustion models. The LES/FMDF is employed in conjunction with non-equilibrium reaction and droplet models. Simulations of turbulent combustion in a spray-controlled double-swirl burner are conducted via LES/FMDF. The generated results are used for better understanding of spray combustion in realistic turbulent flow configurations. The effects of spray angle, mass loading ratio, fuel type, droplet size distribution, wall and inflow/outflow conditions on the flow and combustion are investigated. The LES/FMDF predictions are shown to be consistent with the experimental results.

1 aLi, Z.1 aYaldizli, M.1 aJaberi, F.A. uhttps://icer.msu.edu/numerical-simulations-two-phase-turbulent-combustion-spray-burners01358nas a2200301 4500008004100000245003200041210003100073260001200104300001100116490000700127520059800134100002000732700002000752700001800772700002200790700001900812700001400831700002400845700001900869700002000888700001400908700001500922700001400937700001800951700001900969700001800988856005001006 2006 eng d00aHalf-life and spin of 60Mng0 aHalflife and spin of 60Mng c04/2006 a0443220 v733 aA value of 0.28±0.02 s has been deduced for the half-life of the ground state of {60Mn,} in sharp contrast to the previously adopted value of 51±6 s. Access to the low-spin {60Mn} ground state was accomplished via β decay of the 0+ {60Cr} parent nuclide. New low-energy states in {60Mn} have been identified from β-delayed γ-ray spectroscopy. The new, shorter half-life of {60Mng} is not suggestive of isospin-forbidden β decay, and new spin and parity assignments of 1+ and 4+ have been adopted for the ground and isomeric β-decaying states, respectively, of {60Mn.}

1 aLiddick, S., N.1 aMantica, P., F.1 aBrown, B., A.1 aCarpenter, M., P.1 aDavies, A., D.1 aHoroi, M.1 aJanssens, R., V. F.1 aMorton, A., C.1 aMueller, W., F.1 aPavan, J.1 aSchatz, H.1 aStolz, A.1 aTabor, S., L.1 aTomlin, B., E.1 aWiedeking, M. uhttps://icer.msu.edu/half-life-and-spin-60mng00743nas a2200277 4500008004100000245003200041210003100073260001200104490000700116100002000123700002000143700001800163700002200181700001900203700001400222700002400236700001900260700002000279700001400299700001500313700001400328700001800342700001900360700001800379856006800397 2006 eng d00aHalf-life and spin of 60Mng0 aHalflife and spin of 60Mng c04/20060 v731 aLiddick, S., N.1 aMantica, P., F.1 aBrown, B., A.1 aCarpenter, M., P.1 aDavies, A., D.1 aHoroi, M.1 aJanssens, R., V. F.1 aMorton, A., C.1 aMueller, W., F.1 aPavan, J.1 aSchatz, H.1 aStolz, A.1 aTabor, S., L.1 aTomlin, B., E.1 aWiedeking, M. uhttp://journals.aps.org/prc/abstract/10.1103/PhysRevC.73.04432201919nas a2200181 4500008004100000245010400041210006900145260001200214300001100226490000800237520110200245653019501347100001901542700002101561700001701582700001401599856012401613 2006 eng d00aNon-Iterative Coupled- Cluster Methods Employing Multi-Reference Perturbation Theory Wave Functions0 aNonIterative Coupled Cluster Methods Employing MultiReference Pe c10/2006 a89-1040 v7713 aA new class of non-iterative coupled-cluster (CC) methods, which improve the results of standard CC and equation-of-motion (EOM) CC calculations for ground and excited-state potential energy surfaces along bond breaking coordinates and for excited states dominated by two-electron transitions, is explored. The proposed approaches combine the method of moments of coupled-cluster equations (MMCC), in which the a posteriori corrections due to higher-order correlations are added to standard CC/EOMCC energies, with the multi-reference many-body perturbation theory (MRMBPT), which provides information about the most essential non-dynamic and dynamic correlation effects that are relevant to electronic quasi-degeneracies. The performance of the basic MRMBPT-corrected MMCC approximation, in which inexpensive non-iterative corrections due to triple excitations are added to ground- and excited-state energies obtained with the CC/EOMCC singles and doubles approach, is illustrated by the results of a few test calculations, including bond breaking in HF and H2O, and excited states of CH+.

10aCoupled-cluster theory; Equation-of-motion coupled-cluster methods; Method of moments of coupled-cluster equations; Multi-reference perturbation theory; Non-iterative coupled-cluster methods1 aPiecuch, Piotr1 aLodriguito, M.D.1 aKowalski, K.1 aWloch, M. uhttps://icer.msu.edu/non-iterative-coupled-cluster-methods-employing-multi-reference-perturbation-theory-wave-functions00503nas a2200145 4500008004100000245007200041210006900113300001100182490000700193100001900200700001400219700001900233700001600252856008900268 2006 eng d00aNon-iterative Coupled-Cluster Methods for Excited Electronic States0 aNoniterative CoupledCluster Methods for Excited Electronic State a45-1060 v151 aPiecuch, Piotr1 aWloch, M.1 aLodriguito, M.1 aGour, J., R uhttps://icer.msu.edu/non-iterative-coupled-cluster-methods-excited-electronic-states00614nas a2200157 4500008004100000245012500041210006900166260001100235300001400246490000800260100001900268700001400287700002100301700001600322856011800338 2006 eng d00aTwo New Classes of Non-Iterative Coupled-Cluster Methods Derived from the Method of Moments of Coupled-Cluster Equations0 aTwo New Classes of NonIterative CoupledCluster Methods Derived f c7/2006 a2149-21720 v1041 aPiecuch, Piotr1 aWloch, M.1 aLogriguito, M.D.1 aGour, J., R uhttps://icer.msu.edu/two-new-classes-non-iterative-coupled-cluster-methods-derived-method-moments-coupled-cluster02386nas a2200241 4500008004100000245015000041210006900191260001200260300001400272490000800286520138300294653017701677100001901854700001701873700002401890700001501914700002101929700002301950700002201973700001301995700001502008856012102023 2004 eng d00aMethod of moments of coupled-cluster equations: a new formalism for designing accurate electronic structure methods for ground and excited states0 aMethod of moments of coupledcluster equations a new formalism fo c07/2004 a349–3930 v1123 aThe method of moments of coupled-cluster equations {(MMCC),} which provides a systematic way of improving the results of the standard coupled-cluster {(CC)} and equation-of-motion {CC} {(EOMCC)} calculations for the ground- and excited-state energies of atomic and molecular systems, is described. The {MMCC} theory and its generalized {MMCC} {(GMMCC)} extension that enables one to use the cluster operators resulting from the standard as well as nonstandard {CC} calculations, including those obtained with the extended {CC} {(ECC)} approaches, are based on rigorous mathematical relationships that define the many-body structure of the differences between the full configuration interaction {(CI)} and {CC} or {EOMCC} energies. These relationships can be used to design the noniterative corrections to the {CC/EOMCC} energies that work for chemical bond breaking and potential energy surfaces of excited electronic states, including excited states dominated by double excitations, where the standard single-reference {CC/EOMCC} methods fail. Several {MMCC} and {GMMCC} approximations are discussed, including the renormalized and completely renormalized {CC/EOMCC} methods for closed- and open-shell states, the quadratic {MMCC} approaches, the {CI-corrected} {MMCC} methods, and the {GMMCC} approaches for multiple bond breaking based on the {ECC} cluster amplitudes.

10aCoupled-cluster theory - Method of moments of coupled-cluster equations - Renormalized coupled-cluster methods - extended coupled cluster theory - Potential energy surfaces1 aPiecuch, Piotr1 aKowalski, K.1 aPimienta, I., S. O.1 aFan, P.-D.1 aLodriguito, M.D.1 aMcGuire}, M., J. {1 aKucharski, S., A.1 aKuś, T.1 aMusial, M. uhttps://icer.msu.edu/research/publications/method-moments-coupled-cluster-equations-new-formalism-designing-accurate